

Processing All-Optical Data using Optical Nonlinearities and Nanophotonic Materials and Devices

Y. Fainman

Department of Electrical and Computer Engineering
University of California at San Diego
La Jolla, California 92093-0407

Tel: (858) 534-8909; Fax: (858) 534-1225; E-mail: fainman@ece.ucsd.edu

Ultrafast and Nanoscale Optics Group, http://topaz.ucsd.edu

Data in Optical Domain Workshop, DARPA, Washington, March 18, 2003

Optical Multistage Interconnection Network

Polarization selective Fresnel lenses combine 1×2 switching with 3D interconnectivity

2×8 folded MIN demonstration shows complete interconnectivity in rotator compact cavity design: 1×8 output exhibits high contrast and uniformity

Krishnamorthy, F. Xu, J. Ford, Y. Fainman, "Polarization-controlled multistage switch based on birefringent computer generated holograms," *Appl. Opt.*, **36**, 997-1010, 1997 D. M. Marom, P.E. Shames, F. Xu, and Y. Fainman, "Folded free-space polarization-controlled multistage interconnection network", *Appl. Opt.*, **37**, 6884-6891, 1998

Generalized Femtosecond-rate Processing with Optical Nonlinearities

Different optical signal processing alternatives are available by wave mixing different information carrying waves.

Input 1	Input 2	Input 3	Output
SDW	Spatial information wave	Spatial reference - plane wave	Ultrashort pulse signal: space-to-time conversion
SDW	Spatial information wave	Spatial information wave	Ultrashort pulse signal: correlation of the spatial channels
SDW	SDW	Х	Spatial information wave: time-to-space conversion
SDW	SDW	SDW of the complex amplitude signal	Ultrashort pulse signal: phase conjugation

Nanophotonics:

Far, Near and Local Field Optical Systems

Inhomogeneous systems with variable scale *Polarizability* of atomic-scale homogeneous sub-systems:

Far atomic-scale sub-systems (e-m decoupled such as macro-and micro-optics)

Near atomic-scale sub-systems (e-m coupled such as artificial dielectrics, composites, and resonant PBGs)

Local atomic-scale sub-systems (material internal interactions in absence of e-m field such as superlattice, quantum wires, dots, etc)

Inhomogeneous Optical Nanostructures: Materials and Devices

Approaches to Optical Delay

Atomic Resonance, Free Space Delay, Structural Resonance

$$v_{g} = \left(\frac{dk}{d\omega}\Big|_{\omega_{0}}\right)^{-1} = \frac{c}{n(\omega_{0}) + \omega_{0} \frac{dn(\omega)}{d\omega}\Big|_{\omega_{0}}}$$

Normal dispersion (dn/d ω >0): "Slow" light (v_g << c) Anomalous dispersion (dn/d ω <0): "Fast" light (v_g > c)

Nanostructures for Fast Switching and Control

UCSD

Nanoscale Characterization of Near-field Complex Amplitude with Femtosecond Resolution

Objective: Characterization and testing nanophotonic devices and systems, and understanding near field interactions between light and quantum systems

Technologies enabling processing data in the optical domain.

- Optical address/header processing/recognition
- Optical buffer
- Switching fabric
- 3-R (retiming, reshaping, regeneration)
- Re-routing
- Wavelength conversion
- Contention detection/resolution